Copyright (c) Hyperion Entertainment and contributors.

Math Libraries

From AmigaOS Documentation Wiki
Jump to navigation Jump to search
WIP.png This page is currently being updated to AmigaOS 4.x. Some of the information contained here may not yet be applicable in part or totally.

Math Libraries

This chapter describes the structure and calling sequences required to access the Motorola Fast Floating Point (FFP), the IEEE single-precision math libraries and the IEEE double-precision math libraries via the Amiga-supplied interfaces.

In its present state, the FFP library consists of three separate entities: the basic math library, the transcendental math library, and C and assembly-language interfaces to the basic math library plus FFP conversion functions. The IEEE single-precision, introduced in Release 2, and the double-precision libraries each presently consists of two entities: the basic math library and the transcendental math library.

Open Each Library Separately
Each Task using an IEEE math library must open the library itself. Library base pointers to these libraries may not be shared. Libraries can be context sensitive and may use the Task structure to keep track of the current context. Sharing of library bases by Tasks may seem to work in some systems. This is true for any of the IEEE math libraries.

Depending on the compiler used, it is not always necessary to explicitly call the library functions for basic floating point operations as adding, subtracting, dividing, etc. Consult the manual supplied with the compiler for information regarding the compiler options for floating point functions.

Math Libraries and Functions

There are six math libraries providing functions ranging from adding two floating point numbers to calculating a hyperbolic cosine. They are:

mathffp.library
the basic function library
mathtrans.library
the FFP transcendental math library
mathieeesingbas.library
the IEEE single-precision library
mathieesingtrans.library
the IEEE single-precision transcendental library
mathieeedoubbas.library
the IEEE double-precision library
mathieesingtrans.library
the IEEE double-precision transcendental library

FFP Floating Point Data Format

FFP floating-point variables are defined within C by the float or FLOAT directive. In assembly language they are simply defined by a DC.L/DS.L statement. All FFP floating-point variables are defined as 32-bit entities (longwords) with the following format:

 _____________________________________________
|                                             |
| MMMMMMMM    MMMMMMMM    MMMMMMMM    EEEEEEE |
| 31          23          15          7       |
|_____________________________________________|


The mantissa is considered to be a binary fixed-point fraction; except for 0, it is always normalized (the mantissa is shifted over and the exponent adjusted, so that the mantissa has a 1 bit in its highest position). Thus, it represents a value of less than 1 but greater than or equal to 1/2.

The sign bit is reset (0) for a positive value and set (1) for a negative value.

The exponent is the power of two needed to correctly position the mantissa to reflect the number's true arithmetic value. It is held in excess-64 notation, which means that the two's-complement values are adjusted upward by 64, thus changing $40 (-64) through $3F (+63) to $00 through $7F. This facilitates comparisons among floating-point values.

The value of 0 is defined as all 32 bits being 0s. The sign, exponent, and mantissa are entirely cleared. Thus, 0s are always treated as positive.

The range allowed by this format is as follows:

DECIMAL
9.22337177 * 10^18 > +VALUE > 5.42101070 * 10^-20
-9.22337177 * 10^18 < -VALUE < -2.71050535 * 10^-20
BINARY (HEXADECIMAL)
.FFFFFF * 2^63 > +VALUE > .800000 * 2^-63
-.FFFFFF * 2^63 < -VALUE < -.800000 * 2^-64

Remember that you cannot perform any arithmetic on these variables without using the fast floating-point libraries. The formats of the variables are incompatible with the arithmetic format of C-generated code; hence, all floating-point operations are performed through function calls.

FFP Basic Mathematics Library

The FFP basic math library contains entries for the basic mathematics functions such as add, subtract and divide. It resides in ROM and is opened by calling OpenLibrary() with "mathffp.library" as the argument.

#include <exec/types.h>
#include <libraries/mathffp.h>

#include <clib/mathffp_protos.h>

struct Library *MathBase;

VOID main()
{
if (MathBase = OpenLibrary("mathffp.library", 0))
    {
           . . .

    CloseLibrary(MathBase);
    }
else
    printf("Can't open mathffp.library\n");
}

The global variable MathBase is used internally for all future library references.

FFP Basic Functions

SPAbs() FLOAT SPAbs( FLOAT parm );
Take absolute value of FFP variable.
SPAdd() FLOAT SPAdd( FLOAT leftParm, FLOAT rightParm);
Add two FFP variables.
SPCeil() FLOAT SPCeil( FLOAT parm );
Computer largest integer less than or equal to variable.
SPCmp() LONG SPCmp( FLOAT leftParm, FLOAT rightParm)
Compare two FFP variables.
SPDiv() FLOAT SPDiv( FLOAT leftParm, FLOAT rightParm);
Divide two FFP variables.
SPFix() LONG SPFix( FLOAT parm );
Convert FFP variable to integer.
SPFloor() FLOAT SPFloor( FLOAT parm );
Compute least integer greater than or equal to variable.
SPFlt() FLOAT SPFlt( long integer );
Convert integer variable to FFP.
SPMul() FLOAT SPMul( FLOAT leftParm, FLOAT rightParm);
Multiply two FFP variables.
SPNeg() FLOAT SPNeg( FLOAT parm );
Take two's complement of FFP variable.
SPSub() FLOAT SPSub( FLOAT leftParm, FLOAT rightParm);
Subtract two FFP variables.
SPTst() LONG SPTst( FLOAT parm );
Test an FFP variable against zero.

Be sure to include the proper data type definitions shown below.

#include <exec/types.h>
#include <libraries/mathffp.h>

#include <clib/mathffp_protos.h>

struct Library *MathBase;

VOID main()
{
FLOAT f1, f2, f3;
LONG   i1;

if (MathBase = OpenLibrary("mathffp.library", 0))
    {
    i1 = SPFix(f1);            /* Call SPFix entry */
    f1 = SPFlt(i1);            /* Call SPFlt entry */

    if (SPCmp(f1,f2)) {};      /* Call SPCmp entry */
    if (!(SPTst(f1))) {};      /* Call SPTst entry */

    f1 = SPAbs(f2);            /* Call SPAbs entry */
    f1 = SPNeg(f2);            /* Call SPNeg entry */
    f1 = SPAdd(f2, f3);        /* Call SPAdd entry */
    f1 = SPSub(f2, f3);        /* Call SPSub entry */
    f1 = SPMul(f2, f3);        /* Call SPMul entry */
    f1 = SPDiv(f2, f3);        /* Call SPDiv entry */
    f1 = SPCeil(f2);           /* Call SPCeil entry */
    f1 = SPFloor(f2);          /* Call SPFloor entry */

    CloseLibrary(MathBase);
    }
else
    printf("Can't open mathffp.library\n");
}

The assembly language interface to the FFP basic math routines is shown below, including some details about how the system flags are affected by each operation. The access mechanism is:

MOVEA.L _MathBase,A6
JSR     _LVOSPFix(A6)
FFP Basic Assembly Functions
Function Input Output Condition Codes
_LVOSPAbs D0 = FFP argument D0 = FFP absolute value N = 0

Z = 1 if result is zero
V = 0
C = undefined
X = undefined

_LVOSPAdd D1 = FFP argument 1

D0 = FFP addition

D0 = FFP addition of arg1 + arg2 N = 1 if result is negative

Z = 1 if result is zero
V = 1 if result overflowed
C = undefined
Z = undefined

_LVOSPCeil D0 = FFP argument D0 = least integer >= arg N = 1 if result is negative

Z = 1 if result is zero
V = undefined
C = undefined
Z = undefined

_LVOSPCmp D1 = FFP argument 1

D0 = FFP argument 2

D0 = +1 if arg1 > arg2

D0 = -1 if arg1 < arg2
D0 = 0 if arg1 = arg2

N = 0

Z = 1 if result is zero
V = 0
C = undefined
X = undefined
GT = arg2 > arg1
GE = arg2 >= arg1
EQ = arg2 = arg1
NE = arg2 != arg1
LT = arg2 < arg1
LE = arg2 <= arg1

_LVOSPDiv D1 = FFP argument 1

D0 = FFP argument 2

D0 = FFP division of arg2/arg1 N = 1 if result is negative

Z = 1 if result is zero
V = 1 if result overflowed
C = undefined
Z = undefined

_LVOSPFix D0 = FFP argument D0 = Integer (two's complement) N = 1 if result is negative

Z = 1 if result is zero
V = 1 if overflow occurred
C = undefined
X = undefined

_LVOSPFloor D0 = FFP argument D0 = largest integer <= argument N = 1 if result is negative

Z = 1 if result is zero
V = undefined
C = undefined
Z = undefined

_LVOSPFlt D0 = Integer (two's complement) D0 = FFP result N = 1 if result is negative

Z = 1 if result is zero
V = 0
C = undefined
X = undefined

_LVOSPMul D0 = FFP argument 1

D1 = FFP argument 2

D0 = FFP multiplication of arg1 * arg2 N = 1 if result is negative

Z = 1 if result is zero
V = 1 if result overflowed
C = undefined
Z = undefined

_LVOSPNeg D0 = FFP argument D0 = FFP negated N = 1 if result is negative

Z = 1 if result is zero
V = 0
C = undefined
X = undefined

_LVOSPSub D1 = FFP argument 1

D0 = FFP argument 2

D0 = FFP subtraction of arg2 - arg1 N = 1 if result is negative

Z = 1 if result is zero
V = 1 if result overflowed
C = undefined
Z = undefined

_LVOSPTst D1 = FFP argument

Note: This routine trashes the argument in D1.

D0 = +1 if arg > 0.0

D0 = -1 if arg < 0.0
D0 = 0 if arg = 0.0

N = 1 if result is negative

Z = 1 if result is zero
V = 0
C = undefined
X = undefined
EQ = arg = 0.0
NE = arg != 0.0
PL = arg >= 0.0
MI = arg < 0.0

FFP Transcendental Mathematics Library

The FFP transcendental math library contains entries for the transcendental math functions sine, cosine, and square root. It resides on disk and is opened by calling OpenLibrary() with "mathtrans.library" as the argument.

#include <exec/types.h>
#include <libraries/mathffp.h>

#include <clib/mathffp_protos.h>
#include <clib/mathtrans_protos.h>

struct Library *MathTransBase;

VOID main()
{
if (MathTransBase = OpenLibrary("mathtrans.library",0))
    {
            .
            .
            .
    CloseLibrary(MathTransBase);
    }
else
    printf("Can't open mathtrans.library\n");
}

The global variable MathTransBase is used internally for all future library references. Note that the transcendental math library is dependent upon the basic math library, which it will open if it is not open already. If you want to use the basic math functions in conjunction with the transcendental math functions however, you have to specifically open the basic math library yourself.

FFP Transcendental Functions

Return arccosine of FFP variable.

Return arctangent of FFP variable.

Return arcsine of FFP variable.

Return sine of FFP variable. This function accepts an FFP radian argument and returns the trigonometric sine value. For extremely large arguments where little or no precision would result, the computation is aborted and the “V” condition code is set. A direct return to the caller is made.

Return cosine of FFP variable. This function accepts an FFP radian argument and returns the trigonometric cosine value. For extremely large arguments where little or no precision would result, the computation is aborted and the “V” condition code is set. A direct return to the caller is made.

Return tangent of FFP variable. This function accepts an FFP radian argument and returns the trigonometric tangent value. For extremely large arguments where little or no precision would result, the computation is aborted and the “V” condition code is set. A direct return to the caller is made.

Return sine and cosine of FFP variable. This function accepts an FFP radian argument and returns the trigonometric sine as its result and the trigonometric cosine in the first parameter. If both the sine and cosine are required for a single radian value, this function will result in almost twice the execution speed of calling the SPSin() and SPCos() functions independently. For extremely large arguments where little or no precision would result, the computation is aborted and the “V” condition code is set. A direct return to the caller is made.

Return hyperbolic sine of FFP variable.

Return hyperbolic cosine of FFP variable.

Return hyperbolic tangent of FFP variable.

Return e to the FFP variable power. This function accepts an FFP argument and returns the result representing the value of e (2.71828<math>\ldots</math>) raised to that power.

Return natural log (base e) of FFP variable.

Return log (base 10) of FFP variable.

Return FFP arg2 to FFP arg1.

Return square root of FFP variable.

Convert FFP variable to IEEE format

Convert IEEE variable to FFP format.

Be sure to include proper data type definitions, as shown in the example below.

#include <exec/types.h>
#include <libraries/mathffp.h>

#include <clib/mathffp_protos.h>
#include <clib/mathtrans_protos.h>

struct Library *MathTransBase;

VOID main()
{
FLOAT f1, f2, f3;
FLOAT i1;

if (MathTransBase = OpenLibrary("mathtrans.library",33))
    {
    f1 = SPAsin(f2);        /* Call SPAsin entry */
    f1 = SPAcos(f2);        /* Call SPAcos entry */
    f1 = SPAtan(f2);        /* Call SPAtan entry */

    f1 = SPSin(f2);         /* Call SPSin entry */
    f1 = SPCos(f2);         /* Call SPCos entry */
    f1 = SPTan(f2);         /* Call SPTan entry */
    f1 = SPSincos(&f3, f2); /* Call SPSincos entry */

    f1 = SPSinh(f2);        /* Call SPSinh entry */
    f1 = SPCosh(f2);        /* Call SPCosh entry */
    f1 = SPTanh(f2);        /* Call SPTanh entry */

    f1 = SPExp(f2);         /* Call SPExp entry */
    f1 = SPLog(f2);         /* Call SPLog entry */
    f1 = SPLog10(f2);       /* Call SPLog10 entry */
    f1 = SPPow(f2);         /* Call SPPow entry */
    f1 = SPSqrt(f2);        /* Call SPSqrt entry */

    i1 = SPTieee(f2);       /* Call SPTieee entry */
    f1 = SPFieee(i1);       /* Call SPFieee entry */

    CloseLibrary(MathTransBase);
    }
else
    printf("Can't open mathtrans.library\n");
}

The Amiga assembly language interface to the FFP transcendental math routines is shown below, including some details about how the system flags are affected by the operation. This interface resides in the library file amiga.lib and must be linked with the user code. Note that the access mechanism from assembly language is:

MOVEA.L _MathTransBase,A6
JSR     _LVOSPAsin(A6)

FFP Transcendental Assembly Functions

<thead> </thead> <tbody> </tbody>
Function Input Output Condition Codes
_LVOSPAsin D0 = FFP argument D0 = FFP arcsine N = 0
radian Z = 1 if result is zero
V = 0
C = undefined
X = undefined
_LVOSPAcos D0 = FFP argument D0 = FFP arccosine N = 0
radian Z = 1 if result is zero
V = 1 if overflow occurred
C = undefined
X = undefined
_LVOSPAtan D0 = FFP argument D0 = FFP arctangent N = 0
radian Z = 1 if result is zero
V = 0
C = undefined
X = undefined
_LVOSPSin D0 = FFP argument D0 = FFP sine N = 1 if result is negative
in radians Z = 1 if result is zero
V = 1 if result is meaningless
(that is, input
magnitude too large)
C = undefined
X = undefined
_LVOSPCos D0 = FFP argument D0 = FFP cosine N = 1 if result is negative
in radians Z = 1 if result is zero
V = 1 if result is meaningless
(that is, input
magnitude too large)
C = undefined
X = undefined
_LVOSPTan D0 = FFP argument D0 = FFP tangent N = 1 if result is negative
in radians Z = 1 if result is zero
V = 1 if result is meaningless
(that is, input
magnitude too large)
C = undefined
X = undefined
_LVOSPSincos D0 = FFP argument D0 = FFP sine N = 1 if result is negative
in radians (D1) = FFP cosine Z = 1 if result is zero
D1 = Address to store V = 1 if result is meaningless
cosine result (that is, input
magnitude too large)
C = undefined
X = undefined
_LVOSPSinh D0 = FFP argument D0 = FFP hyperbolic N = 1 if result is negative
in radians sine Z = 1 if result is zero
V = 1 if overflow occurred
C = undefined
X = undefined
_LVOSPCosh D0 = FFP argument D0 = FFP hyperbolic N = 1 if result is negative
in radians cosine Z = 1 if result is zero
V = 1 if overflow occurred
C = undefined
X = undefined

FFP Transcendental Assembly Functions (continued)

<thead> </thead> <tbody> </tbody>
Function Input Output Condition Codes
_LVOSPTanh D0 = FFP argument D0 = FFP hyperbolic N = 1 if result is negative
in radians tangent Z = 1 if result is zero
V = 1 if overflow occurred
C = undefined
X = undefined
_LVOSPExp D0 = FFP argument D0 = FFP exponential N = 0
Z = 1 if result is zero
V = 1 if overflow occurred
C = undefined
Z = undefined
_LVOSPLog D0 = FFP argument D0 = FFP natural N = 1 if result is negative
logarithm Z = 1 if result is zero
V = 1 if argument negative
or zero
C = undefined
Z = undefined
_LVOSPLog10 D0 = FFP argument D0 = FFP logarithm N = 1 if result is negative
(base 10) Z = 1 if result is zero
V = 1 if argument negative
or zero
C = undefined
Z = undefined
_LVOSPPow D0 = FFP exponent value D0 = FFP result of N = 0
D1 = FFP argument value arg taken to exp power Z = 1 if result is zero
V = 1 if result overflowed
or arg <math><</math> 0
C = undefined
Z = undefined
_LVOSPSqrt D0 = FFP argument D0 = FFP square root N = 0
Z = 1 if result is zero
V = 1 if argument was negative
C = undefined
Z = undefined

FFP Mathematics Conversion Library

The FFP mathematics conversion library provides functions to convert ASCII strings to their FFP equivalents and vice versa.

It is accessed by linking code into the executable file being created. The name of the file to include in the library description of the link command line is amiga.lib. When this is included, direct calls are made to the conversion functions. Only a C interface exists for the conversion functions; there is no assembly language interface. The basic math library is required in order to access these functions.

#include <exec/types.h>
#include <libraries/mathffp.h>

#include <clib/mathffp_protos.h>

struct Library *MathBase;

VOID main()
{
if (MathBase = OpenLibrary("mathffp.library", 33))
    {
           . . .

    CloseLibrary(MathBase);
    }
else
    printf("Can't open mathffp.library\n");
}

Math Support Functions

Convert ASCII string into FFP equivalent.

Round ASCII representation of FFP number.

Convert FFP dual-binary number to FFP equivalent.

Convert FFP variable into ASCII equivalent.

Be sure to include proper data type definitions, as shown in the example below. Print statements have been included to help clarify the format of the math conversion function calls.

#include <exec/types.h>
#include <libraries/mathffp.h>

#include <clib/mathffp_protos.h>
#include <clib/alib_protos.h>

struct Library *MathBase;

UBYTE st1[80] = "3.1415926535897";
UBYTE st2[80] = "2.718281828459045";
UBYTE st3[80], st4[80];

VOID main()
{
FLOAT num1, num2;
FLOAT n1, n2, n3, n4;
LONG  exp1, exp2, exp3, exp4;
LONG  mant1, mant2, mant3, mant4;
LONG  place1, place2;

if (MathBase = OpenLibrary("mathffp.library", 33))
    {

    n1 = afp(st1);            /* Call afp entry */
    n2 = afp(st2);            /* Call afp entry */
    printf("\n\nASCII %s converts to floating point %f", st1, n1);
    printf("\nASCII %s converts to floating point %f", st2, n2);

    num1 = 3.1415926535897;
    num2 = 2.718281828459045;

    exp1 = fpa(num1, st3);    /* Call fpa entry */
    exp2 = fpa(num2, st4);    /* Call fpa entry */
    printf("\n\nfloating point %f converts to ASCII %s", num1, st3);
    printf("\nfloating point %f converts to ASCII %s", num2, st4);

    place1 = -2;
    place2 = -1;
    arnd(place1, exp1, st3);    /* Call arnd entry */
    arnd(place2, exp2, st4);    /* Call arnd entry */
    printf("\n\nASCII round of %f to %d places yields %s", num1, place1, st3);
    printf("\nASCII round of %f to %d places yields %s", num2, place2, st4);

    exp1  = -3;   exp2  = 3;    exp3  = -3;   exp4  = 3;
    mant1 = 12345;  mant2 = -54321;  mant3 = -12345; mant4 = 54321;

    n1 = dbf(exp1, mant1);        /* Call dbf entry */
    n2 = dbf(exp2, mant2);        /* Call dbf entry */
    n3 = dbf(exp3, mant3);        /* Call dbf entry */
    n4 = dbf(exp4, mant4);        /* Call dbf entry */
    printf("\n\ndbf of exp = %d and mant = %d yields FFP number of %f", exp1, mant1, n1);
    printf("\ndbf of exp = %d and mant = %d yields FFP number of %f", exp2, mant2, n2);
    printf("\ndbf of exp = %d and mant = %d yields FFP number of %f", exp3, mant3, n3);
    printf("\ndbf of exp = %d and mant = %d yields FFP number of %f", exp4, mant4, n4);

    CloseLibrary(MathBase);
    }
else
    printf("Can't open mathffp.library\n");
}

IEEE Single-Precision Data Format

The IEEE single-precision variables are defined as 32-bit entities with the following format:

<tbody> </tbody>
SEEEEEEE MMMMMMMM MMMMMMMM EEEEEEE
31 23 15 7

boxHidden Bit In The Mantissa.There is a “hidden” bit in the mantissa part of the IEEE numbers. Since all numbers are normalized, the integer (high) bit of the mantissa is dropped off. The IEEE single-precision range is 1.3E-38 (1.4E-45 de-normalized) to 3.4E+38.

The exponent is the power of two needed to correctly position the mantissa to reflect the number’s true arithmetic value. If both the exponent and the mantissa have zero in every position, the value is zero. If only the exponent has zero in every position, the value is an unnormal (extremely small). If all bits of the exponent are set to 1 the value is either a positive or negative infinity or a Not a Number (NaN). NaN is sometimes used to indicate an uninitialized variable.

IEEE Single-Precision Basic Math Library

The ROM-based IEEE single-precision basic math library was introduced in V36. This library contains entries for the basic IEEE single-precision mathematics functions, such as add, subtract, and divide.

The library is opened by making calling OpenLibrary() with "mathieeesingbas.library" as the argument. Do not share the library base pointer between tasks - see note at beginning of chapter for details.

#include <exec/types.h>
#include <libraries/mathieeesp.h>

#include <clib/mathsingbas_protos.h>

struct Library *MathIeeeSingBasBase;

VOID main()
{
    /* do not share base pointer between tasks. */
if (MathIeeeSingBasBase = OpenLibrary("mathieeesingbas.library", 37))
    {
           .
           .
           .
    CloseLibrary(MathIeeeSingBasBase);
    }
else
    printf("Can't open mathieeesingbas.library\n");
}

The global variable MathIeeeSingBasBase is used internally for all future library references.

If an 680x0/68881/68882 processor combination is available, it will be used by the IEEE single-precision basic library instead of the software emulation. Also, if an autoconfigured math resource is available, that will be used. Typically this is a 68881 designed as a 16 bit I/O port, but it could be another device as well.

SP IEEE Basic Functions (V36 or greater)

Take absolute value of IEEE single-precision variable.

Add two IEEE single-precision variables.

Compute least integer greater than or equal to variable.

Compare two IEEE single-precision variables.

Divide two IEEE single-precision variables.

Convert IEEE single-precision variable to integer.

Compute largest integer less than or equal to variable.

Convert integer variable to IEEE single-precision.

Multiply two IEEE single-precision variables.

Take two’s complement of IEEE single-precision variable.

Subtract two IEEE single-precision variables.

Test an IEEE single-precision variable against zero.

Be sure to include proper data type definitions, as shown in the example below.

#include <exec/types.h>
#include <libraries/mathieeesp.h>

#include <clib/mathsingbas_protos.h>

struct Library *MathIeeeSingBasBase;

VOID main()
{
FLOAT f1, f2, f3;
LONG   i1;

if (MathIeeeSingBasBase = OpenLibrary("mathieeesingbas.library",37))
    {
    i1 = IEEESPFix(f1);                /* Call IEEESPFix entry */
    fi = IEEESPFlt(i1);                /* Call IEEESPFlt entry */
    switch (IEEESPCmp(f1, f2)) {};     /* Call IEEESPCmp entry */
    switch (IEEESPTst(f1)) {};         /* Call IEEESPTst entry */
    f1 = IEEESPAbs(f2);                /* Call IEEESPAbs entry */
    f1 = IEEESPNeg(f2);                /* Call IEEESPNeg entry */
    f1 = IEEESPAdd(f2, f3);            /* Call IEEESPAdd entry */
    f1 = IEEESPSub(f2, f3);            /* Call IEEESPSub entry */
    f1 = IEEESPMul(f2, f3);            /* Call IEEESPMul entry */
    f1 = IEEESPDiv(f2, f3);            /* Call IEEESPDiv entry */
    f1 = IEEESPCeil(f2);               /* Call IEEESPCeil entry */
    f1 = IEEESPFloor(f2);              /* Call IEEESPFloor entry */

    CloseLibrary(MathIeeeSingBasBase);
    }
else
    printf("Can't open mathieeesingbas.library\n");
}

The Amiga assembly language interface to the IEEE single-precision basic math routines is shown below, including some details about how the system flags are affected by each operation. Note that the access mechanism from assembly language is as shown below:

MOVEA.L _MathIeeeSingBasBase,A6
JSR     _LVOIEEESPFix(A6)

SP IEEE Basic Assembly Functions

<thead> </thead> <tbody> </tbody>
Function Input Output Condition Codes
_LVOIEEESPFix D0 = IEEE double-precision D0 = Integer N = undefined
argument (two’s complement) Z = undefined
V = undefined
C = undefined
X = undefined
_LVOIEEESPFlt D0 = Integer argument D0 = IEEE N = undefined
(two’s complement) single-precision Z = undefined
V = undefined
C = undefined
X = undefined
_LVOIEEESPCmp D0 = IEEE single-precision D0 = +1 if arg1 <math>></math> arg2 N = 1 if result is negative
argument 1 D0 = -1 if arg1 <math><</math> arg2 Z = 1 if result is zero
D1 = IEEE single-precision D0 = 0 if arg1 = arg2 V = 0
argument 2 C = undefined
X = undefined
GT = arg2 <math>></math> arg1
GE = arg2 <math>\ge</math> arg1
EQ = arg2 = arg1
NE = arg2 <math>\not=</math> arg1
LT = arg2 <math><</math> arg1
E= arg2 <math>\le</math> arg1
_LVOIEEESPTst D0 = IEEE single-precision D0 = +1 if arg <math>></math> 0.0 N = 1 if result is negative
argument D0 = -1 if arg <math><</math> 0.0 Z = 1 if result is zero
D0 = 0 if arg = 0.0 V = 0
C = undefined
X = undefined
EQ = arg = 0.0
NE = arg <math>\not=</math> 0.0
PL = arg <math>\ge</math> 0.0
MI = arg <math><</math> 0.0
_LVOIEEESPAbs D0 = IEEE single-precision D0 = IEEE single-precision N = undefined
argument absolute value Z = undefined
V = undefined
C = undefined
X = undefined
_LVOIEEESPNeg D0 = IEEE single-precision D0 = IEEE single-precision N = undefined
argument negated Z = undefined
V = undefined
C = undefined
X = undefined
_LVOIEEESPAdd D0 = IEEE single-precision D0 = IEEE single-precision N = undefined
argument 1 addition of arg1+arg2 Z = undefined
D1 = IEEE single-precision V = undefined
argument 2 C = undefined
X = undefined
_LVOIEEESPSub D0 = IEEE single-precision D0 = IEEE single-precision N = undefined
argument 1 subtraction of arg1-arg2 Z = undefined
D1 = IEEE single-precision V = undefined
argument 2 C = undefined
X = undefined
_LVOIEEESPMul D0 = IEEE single-precision D0 = IEEE single-precision N = undefined
argument 1 multiplication of arg1<math>\times</math>arg2 Z = undefined
D1 = IEEE single-precision V = undefined
argument 2 C = undefined
X = undefined

SP IEEE Basic Assembly Functions (continued)

<thead> </thead> <tbody> </tbody>
Function Input Output Condition Codes
_LVOIEEESPDiv D0 = IEEE single-precision D0 = IEEE single-precision N = undefined
argument 1 division of arg1/arg2 Z = undefined
D1 = IEEE single-precision V = undefined
argument 2 C = undefined
X = undefined
_LVOIEEESPCeil D0 = IEEE single-precision D0 = least integer N = undefined
variable <math>\ge</math> variable Z = undefined
V = undefined
C = undefined
X = undefined
_LVOIEEESPFloor D0 = IEEE single-precision D0 = largest integer N = undefined
variable <math>\le</math> argument Z = undefined
V = undefined
C = undefined
X = undefined

IEEE Single-Precision Transcendental Math Library

The IEEE single-precision transcendental math library was introduced in V36. It contains entries for transcendental math functions such as sine, cosine, and square root.

This library resides on disk and is opened by calling OpenLibrary() with "mathieeesingtrans.library" as the argument. Do not share the library base pointer between tasks – see note at beginning of chapter.

#include <exec/types.h>
#include <libraries/mathieeesp.h>

struct Library *MathIeeeSingTransBase;

#include <clib/mathsingtrans_protos.h>

VOID main()
{
if (MathIeeeSingTransBase = OpenLibrary("mathieeesingtrans.library",37))
    {
           . . .

    CloseLibrary(MathIeeeSingTransBase);
    }
else  printf("Can't open mathieeesingtrans.library\n");
}

The global variable MathIeeeSingTransBase is used internally for all future library references.

The IEEE single-precision transcendental math library is dependent upon the IEEE single-precision basic math library, which it will open if it is not open already. If you want to use the IEEE single-precision basic math functions in conjunction with the transcendental math functions however, you have to specifically open the basic math library yourself.

Just as the IEEE single-precision basic math library, the IEEE single-precision transcendental math library will take advantage of a 680x0/68881 combination or another math resource, if present.

SP IEEE Transcendental Functions (V36 or greater)

Return arcsine of IEEE single-precision variable.

Return arccosine of IEEE single-precision variable.

Return arctangent of IEEE single-precision variable.

Return sine of IEEE single-precision variable. This function accepts an IEEE radian argument and returns the trigonometric sine value.

Return cosine of IEEE single-precision variable. This function accepts an IEEE radian argument and returns the trigonometric cosine value.

Return tangent of IEEE single-precision variable. This function accepts an IEEE radian argument and returns the trigonometric tangent value.

Return sine and cosine of IEEE single-precision variable. This function accepts an IEEE radian argument and returns the trigonometric sine as its result and the cosine in the first parameter.

Return hyperbolic sine of IEEE single-precision variable.

Return hyperbolic cosine of IEEE single-precision variable.

Return hyperbolic tangent of IEEE single-precision variable.

Return e to the IEEE variable power. This function accept an IEEE single-precision argument and returns the result representing the value of e (2.712828...) raised to that power.

Convert IEEE single-precision number to IEEE single-precision number. The only purpose of this function is to provide consistency with the double-precision math IEEE library.

Return natural log (base e of IEEE single-precision variable.

Return log (base 10) of IEEE single-precision variable.

Return IEEE single-precision arg2 to IEEE single-precision arg1.

Return square root of IEEE single-precision variable.

Convert IEEE single-precision number to IEEE single-precision number. The only purpose of this function is to provide consistency with the double-precision math IEEE library.

Be sure to include the proper data type definitions as shown below.

#include <exec/types.h>
#include <libraries/mathieeesp.h>

#include <clib/mathsingtrans_protos.h>

struct Library *MathIeeeSingTransBase;

VOID main()
{
FLOAT f1, f2, f3;

if (MathIeeeSingTransBase = OpenLibrary("mathieeesingtrans.library",37))
    {
    f1 = IEEEDPAsin(f2);        /* Call IEEESPAsin entry */
    f1 = IEEEDPAcos(f2);        /* Call IEEESPAcos entry */
    f1 = IEEEDPAtan(f2);        /* Call IEEESPAtan entry */
    f1 = IEEEDPSin(f2);         /* Call IEEESPSin entry */
    f1 = IEEEDPCos(f2);         /* Call IEEESPCos entry */
    f1 = IEEEDPTan(f2);         /* Call IEEESPTan entry */
    f1 = IEEEDPSincos(&f3, f2); /* Call IEEESPSincos entry */
    f1 = IEEEDPSinh(f2);        /* Call IEEESPSinh entry */
    f1 = IEEEDPCosh(f2);        /* Call IEEESPCosh entry */
    f1 = IEEEDPTanh(f2);        /* Call IEEESPTanh entry */
    f1 = IEEEDPExp(f2);         /* Call IEEESPExp entry */
    f1 = IEEEDPLog(f2);         /* Call IEEESPLog entry */
    f1 = IEEEDPLog10(f2);       /* Call IEEESPLog10 entry */
    f1 = IEEEDPPow(d2, f3);     /* Call IEEESPPow entry */
    f1 = IEEEDPSqrt(f2);        /* Call IEEESPSqrt entry */

    CloseLibrary(MathIeeeSingTransBase);
    }
else printf("Can't open mathieeesingtrans.library\n");
}

The section below describes the Amiga assembly interface to the IEEE single-precision transcendental math library. The access mechanism from assembly language is:

MOVEA.L _MathIeeeSingTransBase,A6
JSR     _LVOIEEESPAsin(A6)

SP IEEE Transcendental Assembly Functions

<thead> </thead> <tbody> </tbody>
Function Input Output Condition Codes
_LVOIEEESPAsin D0 = IEEE argument D0 = IEEE arcsine N = undefined
radian Z = undefined
V = undefined
C = undefined
X = undefined
_LVOIEEESPAcos D0 = IEEE single-precision D0 = IEEE arccosine N = undefined
argument radian Z = undefined
V = undefined
C = undefined
X = undefined
_LVOIEEESPAtan D0 = IEEE single-precision D0 = IEEE arctangent N = undefined
argument radian Z = undefined
V = undefined
C = undefined
X = undefined
_LVOIEEESPSin D0 = IEEE single-precision D0 = IEEE sine N = undefined
argument in radians Z = undefined
V = undefined
C = undefined
X = undefined
_LVOIEEESPCos D0 = IEEE single-precision D0 = IEEE cosine N = undefined
argument in radians Z = undefined
V = undefined
C = undefined
X = undefined
_LVOIEEESPTan D0 = IEEE single-precision D0 = IEEE tangent N = undefined
argument in radians Z = undefined
V = undefined
C = undefined
X = undefined
_LVOIEEESPSincos A0 = Address to store D0 = IEEE sine N = undefined
cosine result (A0) = IEEE cosine Z = undefined
D0 = IEEE argument V = undefined
in radians C = undefined
X = undefined
_LVOIEEESPSinh D0 = IEEE single-precision D0 = IEEE hyperbolic N = undefined
argument in radians sine Z = undefined
V = undefined
C = undefined
X = undefined
_LVOIEEESPCosh D0 = IEEE single-precision D0 = IEEE hyperbolic N = undefined
argument in radians cosine Z = undefined
V = undefined
C = undefined
X = undefined
_LVOIEEESPTanh D0 = IEEE single-precision D0 = IEEE hyperbolic N = undefined
argument in radians tangent Z = undefined
V = undefined
C = undefined
X = undefined

SP IEEE Transcendental Assembly Functions (continued)

<thead> </thead> <tbody> </tbody>
Function Input Output Condition Codes
_LVOIEEESPExp D0 = IEEE single-precision D0 = IEEE exponential N = undefined
argument Z = undefined
V = undefined
C = undefined
X = undefined
_LVOIEEESPLog D0 = IEEE single-precision D0 = IEEE natural N = undefined
argument logarithm Z = undefined
V = undefined
C = undefined
X = undefined
_LVOIEEESPLog10 D0 = IEEE single-precision D0 = IEEE logarithm N = undefined
argument (base 10) Z = undefined
V = undefined
C = undefined
X = undefined
_LVOIEEESPPow D0 = IEEE single-precision D0 = IEEE result of arg N = undefined
exponent value taken to exp power Z = undefined
D1 = IEEE single-precision V = undefined
argument value C = undefined
X = undefined
_LVOIEEESPSqrt D0 = IEEE single-precision D0 = IEEE square root N = undefined
argument Z = undefined
V = undefined
C = undefined
X = undefined

IEEE Double-Precision Data Format

The IEEE double-precision variables are defined as 64-bit entities with the following format:

<tbody> </tbody>
SEEEEEEE EEEEEIMM MMMMMMMM MMMMMMMM
63 55 47 39
<tbody> </tbody>
MMMMMMMM MMMMMMMM MMMMMMMM MMMMMMMM
31 23 15 7

boxHidden Bit In The Mantissa.There is a “hidden” bit in the mantissa part of the IEEE numbers. Since all numbers are normalized, the integer (high) bit of the mantissa is dropped off. The IEEE double-precision range is 2.2E-308 (4.9E-324 de-normalized) to 1.8E+307.

The exponent is the power of two needed to correctly position the mantissa to reflect the number’s true arithmetic value. If both the exponent and the mantissa have zero in every position, the value is zero. If only the exponent has zero in every position, the value is an unnormal (extremely small). If all bits of the exponent are set to 1 the value is either a positive or negative infinity or a Not a Number (NaN). NaN is sometimes used to indicate an uninitialized variable.

IEEE Double-Precision Basic Math Library

The IEEE double-precision basic math library contains entries for the basic IEEE mathematics functions, such as add, subtract, and divide. This library resides on disk and is opened by calling OpenLibrary() with "mathieeedoubbas.library" as the argument. Do not share the library base pointer between tasks – see note at beginning of chapter for details.

#include <exec/types.h>
#include <libraries/mathieeedp.h>

#include <clib/mathdoubbas_protos.h>

struct Library *MathIeeeDoubBasBase;

VOID main()
{
    /* do not share base pointer between tasks. */
if (MathIeeeDoubBasBase = OpenLibrary("mathieeedoubbas.library", 34))
    {
           . . .

    CloseLibrary(MathIeeeDoubBasBase);
    }
else printf("Can't open mathieeedoubbas.library\n");
}

The global variable MathIeeeDoubBasBase is used internally for all future library references.

If an 680x0/68881/68882 processor combination is available, it will be used by the IEEE basic library instead of the software emulation. Also, if an autoconfigured math resource is available, that will be used. Typically this is a 68881 designed as a 16 bit I/O port, but it could be another device as well.

DP IEEE Basic Functions

Take absolute value of IEEE double-precision variable.

Add two IEEE double-precision variables.

Compute least integer greater than or equal to variable.

Compare two IEEE double-precision variables.

Divide two IEEE double-precision variables.

Convert IEEE double-precision variable to integer.

Compute largest integer less than or equal to variable.

Convert integer variable to IEEE double-precision.

Multiply two IEEE double-precision variables.

Take two’s complement of IEEE double-precision variable.

Subtract two IEEE double-precision variables.

Test an IEEE double-precision variable against zero.

Be sure to include proper data type definitions, as shown in the example below.

#include <exec/types.h>
#include <libraries/mathieeedp.h>

#include <clib/mathieeedoubbas_protos.h>

struct Library *MathIeeeDoubBasBase;

VOID main()
{
DOUBLE d1, d2, d3;
LONG   i1;

if (MathIeeeDoubBasBase = OpenLibrary("mathieeedoubbas.library",34))
    {

    i1 = IEEEDPFix(d1);                /* Call IEEEDPFix entry */
    fi = IEEEDPFlt(i1);                /* Call IEEEDPFlt entry */
    switch (IEEEDPCmp(d1, d2)) {};     /* Call IEEEDPCmp entry */
    switch (IEEEDPTst(d1)) {};         /* Call IEEEDPTst entry */
    d1 = IEEEDPAbs(d2);                /* Call IEEEDPAbs entry */
    d1 = IEEEDPNeg(d2);                /* Call IEEEDPNeg entry */
    d1 = IEEEDPAdd(d2, d3);            /* Call IEEEDPAdd entry */
    d1 = IEEEDPSub(d2, d3);            /* Call IEEEDPSub entry */
    d1 = IEEEDPMul(d2, d3);            /* Call IEEEDPMul entry */
    d1 = IEEEDPDiv(d2, d3);            /* Call IEEEDPDiv entry */
    d1 = IEEEDPCeil(d2);               /* Call IEEEDPCeil entry */
    d1 = IEEEDPFloor(d2);              /* Call IEEEDPFloor entry */

    CloseLibrary(MathIeeeDoubBasBase);
    }
else printf("Can't open mathieeedoubbas.library\n");
}

The Amiga assembly language interface to the IEEE double-precision floating-point basic math routines is shown below, including some details about how the system flags are affected by each operation. The access mechanism from assembly language is:

MOVEA.L _MathIeeeDoubBasBase,A6
JSR     _LVOIEEEDPFix(A6)

DP IEEE Basic Assembly Functions

<thead> </thead> <tbody> </tbody>
Function Input Output Condition Codes
_LVOIEEEDPFix D0/D1 = IEEE D0 = Integer N = undefined
double-precision (two’s complement) Z = undefined
argument V = undefined
C = undefined
X = undefined
_LVOIEEEDPFl D0 = Integer (two’s D0/D1 = IEEE N = undefined
complement) argument double-precision Z = undefined
V = undefined
C = undefined
X = undefined
_LVOIEEEDPCmp D0/D1 = IEEE D0 = +1 if arg1 <math>></math> arg2 N = 1 if result is negative
double-precision D0 = -1 if arg1 <math><</math> arg2 Z = 1 if result is zero
argument 1 D0 = 0 if arg1 = arg2 V = 0
D2/D3 = IEEE C = undefined
double-precision X = undefined
argument 2 GT = arg2 <math>></math> arg1
GE = arg2 <math>\ge</math> arg1
EQ = arg2 = arg1
NE = arg2 <math>\not=</math> arg1
LT = arg2 <math><</math> arg1
LE = arg2 <math>\le</math> arg1
_LVOIEEEDPTst D0/D1 = IEEE D0 = +1 if arg <math>></math> 0.0 N = 1 if result is negative
double-precision D0 = -1 if arg <math><</math> 0.0 Z = 1 if result is zero
argument D0 = 0 if arg = 0.0 V = 0
C = undefined
X = undefined
EQ = arg = 0.0
NE = arg <math>\not=</math> 0.0
PL = arg <math>\ge</math> 0.0
MI = arg <math><</math> 0.0
_LVOIEEEDPAbs D0/D1 = IEEE double- D0/D1 = IEEE double-precision N = undefined
precision argument absolute value Z = undefined
V = undefined
C = undefined
X = undefined
_LVOIEEEDPNeg D0/D1 = IEEE double- D0/D1 = IEEE double-precision N = undefined
precision argument negated Z = undefined
V = undefined
C = undefined
X = undefined
_LVOIEEEDPAdd D0/D1 = IEEE double- D0/D1 = IEEE double-precision N = undefined
precision argument 1 addition of arg1+arg2 Z = undefined
V = undefined
D2/D3 = IEEE double- C = undefined
precision argument 2 X = undefined
_LVOIEEEDPSub D0/D1 = IEEE double- D0/D1 = IEEE double-precision N = undefined
precision argument 1 subtraction of arg1-arg2 Z = undefined
V = undefined
D2/D3 = IEEE double- C = undefined
precision argument 2 X = undefined
_LVOIEEEDPMul D0/D1 = IEEE double- D0/D1 = IEEE double-precision N = undefined
precision argument 1 multiplication of arg1<math>\times</math>arg2 Z = undefined
V = undefined
D2/D3 = IEEE double- C = undefined
precision argument 2 X = undefined

DP IEEE Basic Assembly Functions (continued)

<thead> </thead> <tbody> </tbody>
Function Input Output Condition Codes
_LVOIEEEDPDiv D0/D1 = IEEE double- D0/D1 = IEEE double-precision N = undefined
precision argument 1 division of arg1/arg2 Z = undefined
V = undefined
D2/D3 = IEEE double- C = undefined
precision argument 2 X = undefined
_LVOIEEEDPCeil D0/D1 = IEEE double- D0/D1 = least integer N = undefined
precision argument <math>\ge</math> argument Z = undefined
V = undefined
C = undefined
X = undefined
_LVOIEEEDPFloor D0/D1 = IEEE double- D0/D1 = largest integer N = undefined
precision argument <math>\le</math> argument Z = undefined
V = undefined
C = undefined
X = undefined

IEEE Double-Precision Transcendental Math Library

The IEEE double-precision transcendental math library contains entries for the transcendental math functions such as sine, cosine, and square root. The library resides on disk and is opened by calling OpenLibrary() with "mathieeedoubtrans.library" as the argument. Do not share the library base pointer between tasks – see note at beginning of chapter for details.

#include <exec/types.h>
#include <libraries/mathieeedp.h>

#include <clib/mathdoubtrans_protos.h>

struct Library *MathIeeeDoubTransBase;

VOID main()
{
if (MathIeeeDoubTransBase = OpenLibrary("mathieeedoubtrans.library",34))
    {
           . . .

    CloseLibrary(MathIeeeDoubTransBase);
    }
else printf("Can't open mathieeedoubtrans.library\n");
}

The global variable MathIeeeDoubTransBase is used internally for all future library references.

The IEEE double-precision transcendental math library is dependent upon the IEEE double-precision basic math library, which it will open if it is not open already. If you want to use the IEEE double-precision basic math functions in conjunction with the transcendental math functions however, you have to specifically open the basic math library yourself.

Just as the IEEE double-precision basic math library, the IEEE double-precision transcendental math library will take advantage of a 680x0/68881 combination or another math resource, if present.

DP IEEE Transcendental Functions

Return arcsine of IEEE variable.

Return arccosine of IEEE variable.

Return arctangent of IEEE variable.

Return sine of IEEE variable. This function accepts an IEEE radian argument and returns the trigonometric sine value.

Return cosine of IEEE variable. This function accepts an IEEE radian argument and returns the trigonometric cosine value.

Return tangent of IEEE variable. This function accepts an IEEE radian argument and returns the trigonometric tangent value.

Return sine and cosine of IEEE variable. This function accepts an IEEE radian argument and returns the trigonometric sine as its result and the trigonometric cosine in the first parameter.

Return hyperbolic sine of IEEE variable.

Return hyperbolic cosine of IEEE variable.

Return hyperbolic tangent of IEEE variable.

Return e to the IEEE variable power. This function accept an IEEE argument and returns the result representing the value of e (2.712828<math>\ldots</math>) raised to that power.

Convert IEEE single-precision number to IEEE double-precision number.

Return natural log (base e of IEEE variable.

Return log (base 10) of IEEE variable.

Return IEEE arg2 to IEEE arg1.

Return square root of IEEE variable.

Convert IEEE double-precision number to IEEE single-precision number.

Be sure to include proper data type definitions as shown below.

#include <exec/types.h>
#include <libraries/mathieeedp.h>
#include <clib/mathdoubtrans_protos.h>

struct Library *MathIeeeDoubTransBase;

VOID main()
{
DOUBLE d1, d2, d3;
FLOAT f1;

if (MathIeeeDoubTransBase = OpenLibrary("mathieeedoubtrans.library",34))
    {
    d1 = IEEEDPAsin(d2);        /* Call IEEEDPAsin entry */
    d1 = IEEEDPAcos(d2);        /* Call IEEEDPAcos entry */
    d1 = IEEEDPAtan(d2);        /* Call IEEEDPAtan entry */
    d1 = IEEEDPSin(d2);         /* Call IEEEDPSin entry */
    d1 = IEEEDPCos(d2);         /* Call IEEEDPCos entry */
    d1 = IEEEDPTan(d2);         /* Call IEEEDPTan entry */
    d1 = IEEEDPSincos(&d3, d2); /* Call IEEEDPSincos entry */
    d1 = IEEEDPSinh(d2);        /* Call IEEEDPSinh entry */
    d1 = IEEEDPCosh(d2);        /* Call IEEEDPCosh entry */
    d1 = IEEEDPTanh(d2);        /* Call IEEEDPTanh entry */
    d1 = IEEEDPExp(d2);         /* Call IEEEDPExp entry */
    d1 = IEEEDPLog(d2);         /* Call IEEEDPLog entry */
    d1 = IEEEDPLog10(d2);       /* Call IEEEDPLog10 entry */
    d1 = IEEEDPPow(d2, d3);     /* Call IEEEDPPow entry */
    d1 = IEEEDPSqrt(d2);        /* Call IEEEDPSqrt entry */
    f1 = IEEEDPTieee(d2);       /* Call IEEEDPTieee entry */
    d1 = IEEEDPFieee(f1);       /* Call IEEEDPFieee entry */

    CloseLibrary(MathIeeeDoubTransBase);
    }
else printf("Can't open mathieeedoubtrans.library\n");
}

The section below describes the Amiga assembly interface to the IEEE double-precision transcendental math library. The access mechanism from assembly language is:

MOVEA.L _MathIeeeDoubTransBase,A6
JSR     _LVOIEEEDPAsin(A6)

DP IEEE Transcendental Assembly Functions

<thead> </thead> <tbody> </tbody>
Function Input Output Condition Codes
_LVOIEEEDPAsin D0/D1 = IEEE argument D0/D1 = IEEE N = undefined
arcsine radian Z = undefined
V = undefined
C = undefined
X = undefined
_LVOIEEEDPAcos D0/D1 = IEEE argument D0/D1 = IEEE N = undefined
arccosine radian Z = undefined
V = undefined
C = undefined
X = undefined
_LVOIEEEDPAtan D0/D1 = IEEE D0/D1 = IEEE arctangent N = undefined
argument radian Z = undefined
V = undefined
C = undefined
X = undefined
_LVOIEEEDPSin D0/D1 = IEEE D0/D1 = IEEE sine N = undefined
argument in Z = undefined
radians V = undefined
C = undefined
X = undefined
_LVOIEEEDPCos D0/D1 = IEEE D0/D1 = IEEE cosine N = undefined
argument in Z = undefined
radians V = undefined
C = undefined
X = undefined
_LVOIEEEDPTan D0/D1 = IEEE D0/D1 = IEEE tangent N = undefined
argument in Z = undefined
radians V = undefined
C = undefined
X = undefined
_LVOIEEEDPSincos A0 = Address to D0/D1 = IEEE sine N = undefined
store cosine (A0) = IEEE cosine Z = undefined
result V = undefined
D0/D1 = IEEE C = undefined
argument in radians X = undefined
_LVOIEEEDPSin D0/D1 = IEEE argument D0/D1 = IEEE hyperbolic N = undefined
in radians sine Z = undefined
V = undefined
C = undefined
X = undefined
_LVOIEEEDPCosh D0/D1 = IEEE argument D0/D1 = IEEE hyperbolic N = undefined
in radians cosine Z = undefined
V = undefined
C = undefined
X = undefined
_LVOIEEEDPTanh D0/D1 = IEEE argument D0/D1 = IEEE hyperbolic N = undefined
in radians tangent Z = undefined
V = undefined
C = undefined
X = undefined
_LVOIEEEDPExp D0/D1 = IEEE argument D0/D1 = IEEE exponential N = undefined
Z = undefined
V = undefined
C = undefined
X = undefined

DP IEEE Transcendental Assembly Functions (continued)

<thead> </thead> <tbody> </tbody>
Function Input Output Condition Codes
_LVOIEEEDPLog D0/D1 = IEEE argument D0/D1 = IEEE natural N = undefined
logarithm Z = undefined
V = undefined
C = undefined
X = undefined
_LVOIEEEDPLog10 D0/D1 = IEEE argument D0/D1 = IEEE logarithm N = undefined
(base 10) Z = undefined
V = undefined
C = undefined
X = undefined
_LVOIEEEDPPow D0/D1 = IEEE exponent D0/D1 = IEEE result of N = undefined
D2/D3 = IEEE argument arg taken to exp power Z = undefined
V = undefined
C = undefined
X = undefined
_LVOIEEEDPSqrt D0/D1 = IEEE argument D0/D1 = IEEE square root N = undefined
Z = undefined
V = undefined
C = undefined
X = undefined
_LVOIEEEDPTieee D0/D1 = IEEE format D0 = single-precision N = undefined
argument IEEE floating-point Z = undefined
format V = undefined
C = undefined
X = undefined

Compile and Link Commands for SAS C 5.10

lc -b1 -cfistq -ff -v -y <filename>.c
blink lib:c.o + <filename>.o TO <filename> LIB lib:lcmffp.lib + lib:lc.lib + lib:amiga.lib
lc -b1 -cfistq -fi -v -y <filename>.c
blink lib:c.o + <filename>.o TO <filename> LIB lib:lcmieee.lib + lib:lc.lib + lib:amiga.lib

Function Reference

Here's a brief summary of the functions covered in this chapter. Refer to the SDK for additional information.

FFP Basic Functions

Function Description
SPAbs() Take absolute value of FFP variable
SPAdd() Add two FFP variables
SPCeil() Compute least integer greater than or equal to variable.
SPCmp() Compare two FFP variables
SPDiv() Divide two FFP variables
SPFix() Convert FFP variable to integer
SPFloor() Computer largest integer less than or equal to variable.
SPFlt() Convert integer variable to FFP
SPMul() Multiply two FFP variables
SPNeg() Take two’s complement of FFP variable
SPSub() Subtract two FFP variables
SPTst() Test an FFP variable against zero

FFP Transcendental Functions

Function Description
SPAcos() Return arccosine of FFP variable.
SPAsin() Return arcsine of FFP variable.
SPAtan() Return arctangent of FFP variable.
SPCos() Return cosine of FFP variable.
SPCosh() Return hyperbolic cosine of FFP variable.
SPExp() Return e to the FFP variable power.
SPFieee() Convert IEEE variable to FFP format.
SPLog() Return natural log (base e) of FFP variable.
SPLog10() Return log (base 10) of FFP variable.
SPPow() Return FFP arg2 to FFP arg1.
SPSin() Return sine of FFP variable.
SPSincos() Return sine and cosine of FFP variable.
SPSinh() Return hyperbolic sine of FFP variable.
SPSqrt() Return square root of FFP variable.
SPTan() Return tangent of FFP variable.
SPTanh() Return hyperbolic tangent of FFP variable.
SPTieee() Convert FFP variable to IEEE format

Math Support Functions

Function Description
afp() Convert ASCII string into FFP equivalent.
fpa() Convert FFP variable into ASCII equivalent.
arnd() Round ASCII representation of FFP number.
dbf() Convert FFP dual-binary number to FFP equivalent.

SP IEEE Basic Functions

Function Description
IEEESPAbs() Take absolute value of IEEE single-precision variable
IEEESPAdd() Add two IEEE single-precision variables
IEEESPCeil() Compute least integer greater than or equal to variable
IEEESPCmp() Compare two IEEE single-precision variables
IEEESPDiv() Divide two IEEE single-precision variables
IEEESPFix() Convert IEEE single-precision variable to integer
IEEESPFloor() Compute largest integer less than or equal to variable
IEEESPFlt() Convert integer variable to IEEE single-precision
IEEESPMul() Multiply two IEEE single-precision variables
IEEESPNeg() Take two’s complement of IEEE single-precision variable
IEEESPSub() Subtract two IEEE single-precision variables
IEEESPTst() Test an IEEE single-precision variable against zero

SP IEEE Transcendental Functions

Function Description
IEEESPACos() Return arccosine of IEEE single-precision variable.
IEEESPASin() Return arcsine of IEEE single-precision variable.
IEEESPAtan() Return arctangent of IEEE single-precision variable.
IEEESPCos() Return cosine of IEEE single-precision variable.
IEEESPCosh() Return hyperbolic cosine of IEEE single-precision variable.
IEEESPExp() Return e to the IEEE variable power.
IEEESPLog() Return natural log (base e of IEEE single-precision variable.
IEEESPLog10() Return log (base 10) of IEEE single-precision variable.
IEEESPPow() Return power of IEEE single-precision variable.
IEEESPSin() Return sine of IEEE single-precision variable.
IEEESPSincos() Return sine and cosine of IEEE single-precision variable.
IEEESPSinh() Return hyperbolic sine of IEEE single-precision variable.
IEEESPSqrt() Return square root of IEEE single-precision variable.
IEEESPTan() Return tangent of IEEE single-precision variable.
IEEESPTanh() Return hyperbolic tangent of IEEE single-precision variable.

DP IEEE Basic Functions

Function Description
IEEEDPAbs() Take absolute value of IEEE double-precision variable
IEEEDPAdd() Add two IEEE double-precision variables
IEEEDPCeil() Compute least integer greater than or equal to variable
IEEEDPCmp() Compare two IEEE double-precision variables
IEEEDPDiv() Divide two IEEE double-precision variables
IEEEDPFix() Convert IEEE double-precision variable to integer
IEEEDPFloor() Compute largest integer less than or equal to variable
IEEEDPFlt() Convert integer variable to IEEE double-precision
IEEEDPMul() Multiply two IEEE double-precision variables
IEEEDPNeg() Take two’s complement of IEEE double-precision variable
IEEEDPSub() Subtract two IEEE single-precision variables
IEEEDPTst() Test an IEEE double-precision variable against zero

DP IEEE Transcendental Functions

Function Description
IEEEDPACos() Return arccosine of IEEE double-precision variable.
IEEEDPASin() Return arcsine of IEEE double-precision variable.
IEEEDPAtan() Return arctangent of IEEE double-precision variable.
IEEEDPCos() Return cosine of IEEE double-precision variable.
IEEEDPCosh() Return hyperbolic cosine of IEEE double-precision variable.
IEEEDPExp() Return e to the IEEE variable power.
IEEEDPFieee() Convert IEEE single-precision number to IEEE double-precision number.
IEEEDPLog() Return natural log (base e of IEEE double-precision variable.
IEEEDPLog10() Return log (base 10) of IEEE double-precision variable.
IEEEDPPow() Return power of IEEE double-precision variable.
IEEEDPSin() Return sine of IEEE double-precision variable.
IEEEDPSincos() Return sine and cosine of IEEE double-precision variable.
IEEEDPSinh() Return hyperbolic sine of IEEE double-precision variable.
IEEEDPSqrt() Return square root of IEEE double-precision variable.
IEEEDPTan() Return tangent of IEEE double-precision variable.
IEEEDPTanh() Return hyperbolic tangent of IEEE double-precision variable.
IEEEDPTieee() Convert IEEE double-precision number to IEEE single-precision number.